Properties of Polynomial Functions

A. Graphing from Factored Form

Recall: a) Roots = Zeros = x-intercepts
b) The parabola with the equation $y=-2(x+4)(x-3)$ has the x-intercepts $-4,3$

The same is true for polynomial functions, regardless of their degree.
Eg. $y=\frac{1}{2}(x+2)(x-1)(x-5)$ has the x-ints of $-2,1,5$. Notice in the graph below that the graph passes through each x-intercept.

Look at the following graphs and their equations. What patterns occur at their x-intercepts?

$$
y=3(x-1)(x+4)^{2}
$$

$$
y=(x+2)^{2}(x-3)^{2}
$$

$$
y=-\frac{1}{2}(x-2)^{3}(x+3)^{2}(x)
$$

Note: The order of each root determines the shape of the graph at the root.

Order of Root	Shape of Graph at Root
Single	
Double	
Triple	

Example 1 Sketch each graph.
a) $y=(x+2)(x-5)^{2}$
b) $y=(x+3)^{2}(x-1)^{2}$
c) $y=-(x-2)(x+4)^{3}$

Example 2 Determine an equation for each of the following polynomial functions.

B. Odd/Even Functions

An even function satisfies the property that $\boldsymbol{f}(-\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})$ for all values of x in its domain. An even function is symmetric about the y-axis, which means it has a line of symmetry at $x=0$. Not all even degree functions are even functions!

An odd function satisfies the property that $\boldsymbol{f}(-\boldsymbol{x})=-\boldsymbol{f}(\boldsymbol{x})$ for all values of x in its domain. Also, an even function is point symmetric about the origin, which means that (0,0) is a point of symmetry. Not all odd degree functions are odd functions!

Example Determine whether each function is odd, even, or neither.
a. $f(x)=x^{4}-x^{2}+2$
b. $f(x)=x^{3}+3 x$
c. $f(x)=x^{3}+2 x^{2}-3$

