A. Graphing from Factored Form

Recall: a) Roots = Zeros = x-intercepts

b) The parabola with the equation y = -2(x + 4)(x - 3) has the x-intercepts -4, 3

The same is true for polynomial functions, regardless of their degree.

Eg. $y = \frac{1}{2}(x+2)(x-1)(x-5)$ has the x-ints of -2, 1, 5. Notice in the graph below that the graph passes through each x-intercept.

Look at the following graphs and their equations. What patterns occur at their x-intercepts?

Note: The order of each root determines the shape of the graph at the root.

Order of Root	Shape of Graph at Root
Single	
Double	
Triple	

Example 1 Sketch each graph.

a)
$$y = (x+2)(x-5)^2$$

b)
$$y = (x+3)^2(x-1)^2$$

	7	 		-
 +	 	 ++	-++-	
				-
 +++	 	 ++	-++	
 	 	 ++		
 	 	 ++		
		+ + +	+ + +	-
				x
				x
 				x
				x
				x
				* x
				x
				*
				*
				* x
				x

Example 2 Determine an equation for each of the following polynomial functions.

B. Odd/Even Functions

An even function satisfies the property that f(-x) = f(x) for all values of x in its domain. An even function is symmetric about the y-axis, which means it has a line of symmetry at x=0. Not all even degree functions are even functions!

An odd function satisfies the property that f(-x) = -f(x) for all values of x in its domain. Also, an even function is point symmetric about the origin, which means that (0,0) is a point of symmetry. Not all odd degree functions are odd functions!

Example Determine whether each function is odd, even, or neither.

a. $f(x) = x^4 - x^2 + 2$

b. $f(x) = x^3 + 3x$

c.
$$f(x) = x^3 + 2x^2 - 3$$