Investigating Exponential Functions

Part 1: Comparing Exponential Functions of the form $y = b^x$ where b >1 How does changing the base affect the rate of growth?

 $y = 2^{x}$

x	у
-2	
-1	
0	
1	
2	
3	

x	У
-2	
-1	
0	
1	
2	
3	

 $y = 5^x$

x	у
-2	
-1	
0	
1	
2	
3	

General Conclusions:

Rate of Growth:

Y – intercept:

Domain and Range:

Part 2: Comparing Exponential Functions of the form $y = b^x$ where 0 < b < 1How does changing the base affect the rate of growth?

x	у
-2	
-1	
0	
1	
2	
3	

General Conclusions:

Rate of Decay:

Y – intercept:

Domain and Range:

Part 3: Using the Graph of an Exponential Function to Solve a Related Equation

Task: Graph the function $y = 2^x$ and use the graph to solve the equation $2^x = 5$

Using the Desmos application (or website), graph $y = 2^x$.

In order to solve the equation $2^x = 5$, we need to find the value of x at the point on the graph were y=5.

Since this is a decimal number, it is difficult to find the exact x value.

To make this easier, graph y = 5 and find coordinates of the point of intersection between the 2 graphs (by clicking on the point of intersection).

The value of x at this point of intersection is the solution to $2^x = 5$. (The solution is x = 2.322)