<u>MCT 4C</u>

Introduction to Polynomial Functions

<u>Recall</u>: A polynomial is a sum of terms that are each the product of a constant and a power of *x* with a whole number exponent

Examples of Polynomials:

•
$$3x^3 - 4x^2 + 5x - 7$$

• $-2x^4 - 6x^2$
• $x^3 - 3x^2 + 2x - 1$
Examples of Polynomial Functions:
• $f(x) = 3x^3 - 2x^2 + 4x + 1$
• $g(x) = -5x^4 + 2x^2 - 1$

Polynomials can be represented using a set of ordered pairs, a table of values, an equation, a graph and a mapping.

The <u>degree</u> of a polynomial function is the highest exponent of the polynomial when written in expanded form.

ie. $f(x) = 4x^4 - 3x^3 + 2x - 7$ has a degree of _____

When a polynomial is given in factored form, the degree can be found by adding the exponents on each factor.

ie. $f(x) = (x - 3)^2(x + 4)(2x - 1)$ has a degree of _____

Example: Complete the chart.

Polynomial Function	Degree
f(x) = (x - 7)(x + 1)	
$g(x) = (3x - 4)^2(x - 1)$	
$h(x) = (x + 1)^3 (x - 2)^2$	

Special names are given to some polynomial functions as indicated in the following table:

Degree	Туре
1	Linear
2	Quadratic
3	Cubic
4	Quartic
5	Quintic

Polynomial functions can be described in terms of their **end behaviour**. This refers to which quadrant the function originates in (on the left) and where it travels to (on the right). Eg. a line with a positive slope begins in quadrant 3 and ends in quadrant 1 so we say the end behaviour is $Q3 \rightarrow Q1$