MCT 4C

Introduction to Polynomial Functions

Recall: A polynomial is a sum of terms that are each the product of a constant and a power of x with a whole number exponent

Examples of Polynomials:

- $3 x^{3}-4 x^{2}+5 x-7$
- $-2 x^{4}-6 x^{2}$
- $x^{3}-3 x^{2}+2 x-1$

Examples of Polynomial Functions:

- $f(x)=3 x^{3}-2 x^{2}+4 x+1$
- $g(x)=-5 x^{4}+2 x^{2}-1$

Polynomials can be represented using a set of ordered pairs, a table of values, an equation, a graph and a mapping.

The degree of a polynomial function is the highest exponent of the polynomial when written in expanded form.
ie. $f(x)=4 x^{4}-3 x^{3}+2 x-7$ has a degree of \qquad
When a polynomial is given in factored form, the degree can be found by adding the exponents on each factor.
ie. $f(x)=(x-3)^{2}(x+4)(2 x-1)$ has a degree of \qquad
Example: Complete the chart.

Polynomial Function	Degree
$\mathrm{f}(\mathrm{x})=(\mathrm{x}-7)(\mathrm{x}+1)$	
$\mathrm{g}(\mathrm{x})=(3 \mathrm{x}-4)^{2}(\mathrm{x}-1)$	
$\mathrm{h}(\mathrm{x})=(\mathrm{x}+1)^{3}(\mathrm{x}-2)^{2}$	

Special names are given to some polynomial functions as indicated in the following table:

Degree	Type
1	Linear
2	Quadratic
3	Cubic
4	Quartic
5	Quintic

Polynomial functions can be described in terms of their end behaviour. This refers to which quadrant the function originates in (on the left) and where it travels to (on the right). Eg. a line with a positive slope begins in quadrant 3 and ends in quadrant 1 so we say the end behaviour is Q3 \rightarrow Q1

$$
\begin{array}{l|l|l}
\text { Recall: } & \text { Q2 } & \text { Q1 } \\
\hline & \text { Q3 } & \text { Q4 }
\end{array}
$$

