Introduction to Logarithms

Solve: $2^{x}=8 \quad 4^{2 x}=8 \quad 3^{x}=10$

If $a^{y}=x$, then $y=\log _{a} x \quad$ where $a, x>0$ and $a \neq 0$
This means " y is the exponent we put on a to get x ". A logarithm is just an exponent!
$\log _{a} x$ is pronounced $" \log x$, base $a "$.
Example Evaluate.
a. $\log _{5} 25$
b. $\log _{3} 81$
c. $\log _{5} \frac{1}{5}$
d. $\log _{16} 4$
e. $\log _{2} 16 \sqrt{2}$
$\log _{b} 1=0$
$\log _{b} b^{x}=x$
$\log _{b} b=1$
$b^{\log _{b} x}=x$

Example 2 Evaluate.
a. $\log _{3} 3$
b. $\log _{1000} 1$
c. $4^{\log _{4} 16}$

Example 3 Express in logarithmic form.
a. $3^{2}=9$
b. $2^{9}=512$
c. $4^{3}=64$

Example 4 Express in exponential form.
a. $\log _{4} 2=\frac{1}{2}$
b. $\log _{3} 27=3$
c. $\log _{2} 64=6$

Base 10 Logarithms (Common Logarithms)

$\log _{10} x$ can be written as $\log x$. So when the base is not written in a logarithm, we know it is 10. Logarithms with a base of 10 are called common logarithms. Your calculator can evaluate Base 10 logarithms.

Example 5 Use your calculator to evaluate.
a. $\log 100$
b. $\log 0.5$
c. $\log 0$

