Introduction to Vectors

Is it possible to swim straight across a river? The answer is "yes" only if there is no current. The truth of the matter is that most rivers have a current. So as a result, you really swim the displacement, which means that you swim a certain distance across the river in a direction that is affected by the current. You can see that the diagrams below demonstrate this idea. No Current

With a Current

Definitions

Scalar - is a quantity or measurement that has only magnitude and can be expressed using a single numerical value
eg. time, temperature, volume, age, height, etc.

Vector - is a quantity that has both direction and magnitude
eg. Displacement (moving from A to B), force (such as gravity, which has
magnitude and acts downward), velocity, magnetic fields

A vector, \vec{v}, can be represented as a directed line segment with an arrowhead that indicates the direction. The magnitude of the vector, $|\vec{v}|$, is represented by the length of the directed line segment. The tail of the vector defines the origin of the vector and the head defines the tip with an arrowhead. Sometimes a vector can be represented as $\overrightarrow{A B}$ and its magnitude is given by $|\overrightarrow{A B}|$.

Equivalent vectors, or equal vectors, have the same magnitude and direction, but may have different positions.

$A \longrightarrow B$
$\mathrm{C} \longrightarrow \mathrm{D}$

Opposite vectors have the same magnitude but are opposite in direction.

$$
\vec{a}=-\vec{b} \text { and } \vec{b}=-\vec{a}
$$

The direction of a vector can be expressed in 2 ways as either a:

1. True bearing (sometimes called bearing or compass form) - an angle measured clockwise from north and expressed as a three digit number
2. Quadrant bearing - is an angle between 0° and 90° measured east or west of the north-south line

The same vector can be expressed as being 150° or $S 30^{\circ} \mathrm{E}$.

Example Express as a true bearing.
a. $\mathrm{N} 50^{\circ} \mathrm{E}$
b. $S 10^{\circ} \mathrm{W}$

Example You are crossing a 12 m river in a rowboat. When you reach the other side, you discover that the current caused you to reach a point which was 5 m away from where you should have landed. Calculate the magnitude of the displacement vector.

