Components of Vectors

Recall: $\quad m=\frac{\text { rise }}{\text { run }}$

Similarly, any vector can be resolved into its perpendicular, or rectangular, vector components.

Vector, \vec{v}, at an angle of ϑ to the horizontal, is the resultant (or sum), of its perpendicular components \vec{x} and \vec{y}.

To determine $|\vec{v}|$, we can use Pythagorean Theorem if we know $|\vec{x}|$ and $|\vec{y}|$.
Since we know the direction of \vec{v}, relative to \vec{x} (or \vec{y}), we can use trigonometry to determine the direction and /or magnitude of the other vectors.

Eg. $\quad \cos \vartheta=\frac{|\vec{x}|}{|\vec{v}|} \quad$ and $\quad \sin \vartheta=\frac{|\vec{y}|}{|\vec{v}|}$
So, $|\vec{x}|=|\vec{v}| \cos \vartheta \quad|\vec{y}|=|\vec{v}| \sin \vartheta$

Example 1 Determine the perpendicular components for the following vectors:
a) 250 N on bearing of 50°
b) $120 \mathrm{~km} / \mathrm{h} \mathrm{S80}{ }^{\circ} \mathrm{E}$

Example 2 A cable exerts a force of 350 N at an angle of 27.9° with the horizontal. Resolve this force into its perpendicular components.

Example 3 Alec drove 8 km east and then 6 km north.
a) Draw the perpendicular component vectors and the resultant vector, $|\vec{r}|$.
b) Calculate the magnitude and direction, relative to the horizontal vector, of the resultant vector.

