Components of Vectors

Recall: $m = \frac{rise}{run}$

Similarly, any vector can be **resolved** into its perpendicular, or rectangular, vector components.

Vector, \vec{v} , at an angle of ϑ to the horizontal, is the **resultant** (or sum), of its perpendicular components \vec{x} and \vec{y} .

To determine $|\vec{v}|$, we can use Pythagorean Theorem if we know $|\vec{x}|$ and $|\vec{y}|$.

Since we know the direction of \vec{v} , relative to \vec{x} (or \vec{y}), we can use trigonometry to determine the direction and /or magnitude of the other vectors.

Eg. $\cos \vartheta = \frac{|\vec{x}|}{|\vec{v}|}$ and $\sin \vartheta = \frac{|\vec{y}|}{|\vec{v}|}$ So, $|\vec{x}| = |\vec{v}| \cos \vartheta$ $|\vec{y}| = |\vec{v}| \sin \vartheta$

Example 1 Determine the perpendicular components for the following vectors: a) 250N on bearing of 50° b) 120 km/h S80°E Example 2 A cable exerts a force of 350N at an angle of 27.9° with the horizontal. Resolve this force into its perpendicular components.

Example 3 Alec drove 8 km east and then 6 km north.

- a) Draw the perpendicular component vectors and the resultant vector, $ec{r}ec{}$.
- b) Calculate the magnitude and direction, relative to the horizontal vector, of the resultant vector.